Research team produces extremely conductive hydrogel for medical applications

Due to their tissue-like mechanical properties, hydrogels are being increasingly used for biomedical applications; a well-known example are soft contact lenses. These gel-like polymers consist of 90 percent water, are elastic and particularly biocompatible. Hydrogels that are also electrically conductive allow additional fields of application, for example in the transmission of electrical signals in the body or as sensors. An interdisciplinary research team of the Research Training Group (RTG) 2154 “Materials for Brain” at Kiel University (CAU) has now developed a method to produce hydrogels with an excellent level of electrical conductivity. What makes this method special is that the mechanical properties of the hydrogels are largely retained. This way they could be particularly well suited, for example, as a material for medical functional implants, which are used to treat certain brain diseases. The group’s findings were published on March 16, 2021 in the prestigious journal Nano Letters. Continue reading at Physorg